Fast resolution of a single factor Heath-Jarrow-Morton model with stochastic volatility
نویسندگان
چکیده
This paper considers the single factor Heath-Jarrow-Morton model for the interest rate curve with stochastic volatility. Its natural formulation, described in terms of stochastic differential equations, is solved through Monte Carlo simulations, that usually involve rather large computation time, inefficient from a practical (financial) perspective. This model turns to be Markovian in three dimensions and therefore it can be mapped into a 3D partial differential equations problem. We propose an optimized numerical method to solve the 3D PDE model in both low computation time and reasonable accuracy, a fundamental criterion for practical purposes. The spatial and temporal discretization are performed using finite-difference and Crank-Nicholson schemes respectively, and the computational efficiency is largely increased performing a scale analysis and using Alternating Direction Implicit schemes. Several numerical considerations such as convergence criteria or computation time are analyzed and discussed.
منابع مشابه
Explicit Bond Option and Swaption Formula in Heath-jarrow-morton One Factor Model
We present an explicit formula for European options on coupon bearing bonds and swaptions in the Heath-Jarrow-Morton (HJM) one factor model with non-stochastic volatility. The formula extends the Jamshidian formula for zero-coupon bonds. We provide also an explicit way to compute the hedging ratio (∆) to hedge the option with its underlying.
متن کاملA Class of Heath-jarrow-morton Term Structure Models with Stochastic Volatility
This paper considers a class of Heath-Jarrow-Morton term structure models with stochastic volatility. These models admit transformations to Markovian systems, and consequently lend themselves to well-established solution techniques for the bond and bond option prices. Solutions for certain special cases are obtained, and compared against their non-stochastic counterparts.
متن کاملEstimation of the Heath-jarrow-morton Model via the Kalman Filter: a Monte Carlo Analysis *
This paper considers the Heath-Jarrow-Morton (HJM) model of the term structure of interest rates for a fairly general specification of forward rate volatility, including stochastic variables. Estimation of this volatility function is at the heart of the identification of the HJM model. Reduction of the model to state space form is discussed and use of the Kalman filter as an estimation techniqu...
متن کاملA volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models
The aim of this work is to develop a simulation approach to the yield curve evolution in the Heath, Jarrow & Morton (1992) framework. The stochastic quantities considered as affecting the forward rate volatility function are the spot rate and the forward rate. A decomposition of the volatility function into a Hull & White (1990) volatility and a remainder allows us to develop an efficient Contr...
متن کاملFinite dimensional Markovian realizations for stochastic volatility forward rate models
We consider forward rate rate models of Heath-Jarrow-Morton type, as well as more general infinite dimensional SDEs, where the volatility/diffusion term is stochastic in the sense of being driven by a separate hidden Markov process. Within this framework we use the previously developed Hilbert space realization theory in order provide general necessary and sufficent conditions for the existence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2011